DEFINITION 9.1

Given two unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ of a parameter θ , with variances $V(\hat{\theta}_1)$ and $V(\hat{\theta}_2)$, respectively, then the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$, denoted eff $(\hat{\theta}_1, \hat{\theta}_2)$, is defined to be the ratio

$$\operatorname{eff}(\hat{\theta}_1, \ \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}.$$

THEOREM 9.1

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n\to\infty} V(\hat{\theta}_n) = 0.$$

THEOREM 9.2

Suppose that $\hat{\theta}_n$ converges in probability to θ and that $\hat{\theta}'_n$ converges in probability to θ' .

- **a** $\hat{\theta}_n + \hat{\theta}'_n$ converges in probability to $\theta + \theta'$. **b** $\hat{\theta}_n \times \hat{\theta}'_n$ converges in probability to $\theta \times \theta'$.
- **c** If $\theta' \neq 0$, $\hat{\theta}_n/\hat{\theta}_n'$ converges in probability to θ/θ' .
- **d** If $g(\cdot)$ is a real-valued function that is continuous at θ , then $g(\hat{\theta}_n)$ converges in probability to $g(\theta)$.

DEFINITION 9.3

Let Y_1, Y_2, \ldots, Y_n denote a random sample from a probability distribution with unknown parameter θ . Then the statistic $U = g(Y_1, Y_2, \dots, Y_n)$ is said to be sufficient for θ if the conditional distribution of Y_1, Y_2, \ldots, Y_n , given U, does not depend on θ .

Theorem Factorization

THEOREM 9.4

Let U be a statistic based on the random sample Y_1, Y_2, \ldots, Y_n . Then U is a *sufficient statistic* for the estimation of a parameter θ if and only if the likelihood $L(\theta) = L(y_1, y_2, \dots, y_n | \theta)$ can be factored into two nonnegative functions,

$$L(y_1, y_2, ..., y_n | \theta) = g(u, \theta) \times h(y_1, y_2, ..., y_n)$$

where $g(u, \theta)$ is a function only of u and θ and $h(y_1, y_2, \dots, y_n)$ is not a function of θ .

THEOREM 9.5

The Rao–Blackwell Theorem Let $\hat{\theta}$ be an unbiased estimator for θ such that $V(\hat{\theta}) < \infty$. If U is a sufficient statistic for θ , define $\hat{\theta}^* = E(\hat{\theta} \mid U)$. Then, for all θ ,

$$E(\hat{\theta}^*) = \theta$$
 and $V(\hat{\theta}^*) \le V(\hat{\theta})$.

Find MVUE: Likelihood

Likelihood function

Factorization thm

find U suff stat for D

find f(U) unblosed for D

Method of Moments

Choose as estimates those values of the parameters that are solutions of the equations $\mu'_k = m'_k$, for k = 1, 2, ..., t, where t is the number of parameters to be estimated.

$$\mu_{k'} = IE(Y^{k})$$
 $m'_{k} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{k}$

list system of equations, solve for the params

Method of Maximum Likelihood

Suppose that the likelihood function depends on k parameters $\theta_1, \theta_2, \ldots, \theta_k$. Choose as estimates those values of the parameters that maximize the likelihood $L(y_1, y_2, \ldots, y_n | \theta_1, \theta_2, \ldots, \theta_k)$.

Likelihood function

v
take derivative (log-likelihood)

Set to 0

v

solve for params