The Elements of a Statistical Test

- 1. Null hypothesis, H_0
- 2. Alternative hypothesis, H_a
- 3. Test statistic
- 4. Rejection region

DEFINITION 10.1

A type I error is made if H_0 is rejected when H_0 is true. The probability of a type I error is denoted by α . The value of α is called the *level* of the test.

A type II error is made if H_0 is accepted when H_a is true. The probability of a type II error is denoted by β .

Large-Sample α -Level Hypothesis Tests

$$H_0: \theta = \theta_0.$$

$$\theta > \theta_0$$
 (upper-tail alternative).

$$H_a: \begin{cases} \theta > \theta_0 & \text{(upper-tail alternative).} \\ \theta < \theta_0 & \text{(lower-tail alternative).} \\ \theta \neq \theta_0 & \text{(two-tailed alternative).} \end{cases}$$

$$\hat{\theta} - \theta_0$$

Test statistic:
$$Z = \frac{\theta - \theta_0}{\sigma_0}$$

Test statistic:
$$Z = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}}$$
.

Rejection region:
$$\begin{cases} \{z > z_{\alpha}\} & \text{(upper-tail RR).} \\ \{z < -z_{\alpha}\} & \text{(lower-tail RR).} \\ \{|z| > z_{\alpha/2}\} & \text{(two-tailed RR).} \end{cases}$$

$$\begin{cases} |z| > z_{\alpha/2} \end{cases} \text{ (two-tailed RR)}.$$

the probability β of a type II error is

$$\beta = P(\hat{\theta} \text{ is not in RR when } H_a \text{ is true})$$

$$= P(\hat{\theta} \le k \text{ when } \theta = \theta_a) = P\left(\frac{\hat{\theta} - \theta_a}{\sigma_{\hat{\theta}}} \le \frac{k - \theta_a}{\sigma_{\hat{\theta}}} \text{ when } \theta = \theta_a\right).$$

Sample Size for an Upper-Tail α -Level Test

$$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu_a - \mu_0)^2}$$

DEFINITION 10.2

If W is a test statistic, the p-value, or attained significance level, is the smallest level of significance α for which the observed data indicate that the null hypothesis should be rejected.

RR: $\{w \le k\}$ —the p-value associated with an observed value w_0 of W is given by

$$p$$
-value = $P(W \le w_0, \text{ when } H_0 \text{ is true})$.

Analogously, if we were to reject H_0 in favor of H_a for large values of W—say, RR: $\{w \ge k\}$ —the p-value associated with the observed value w_0 is

$$p$$
-value = $P(W \ge w_0$, when H_0 is true).

A Small-Sample Test for μ

Assumptions: Y_1, Y_2, \ldots, Y_n constitute a random sample from a normal distribution with $E(Y_i) = \mu$.

$$H_0: \mu = \mu_0.$$

$$H_{a}: \mu > \mu_{0} \quad \text{(upper-tail alternative)}.$$

$$H_{a}: \begin{cases} \mu > \mu_{0} & \text{(lower-tail alternative)}. \\ \mu < \mu_{0} & \text{(two-tailed alternative)}. \end{cases}$$

$$Test statistic: T = \frac{\overline{Y} - \mu_{0}}{S/\sqrt{n}}.$$

$$Rejection region: \begin{cases} t > t_{\alpha} & \text{(upper-tail RR)}. \\ t < -t_{\alpha} & \text{(lower-tail RR)}. \end{cases}$$

Test statistic:
$$T = \frac{\overline{Y} - \mu_0}{S/\sqrt{n}}$$

Rejection region:
$$\begin{cases} t > t_{\alpha} & \text{(upper-tail RR).} \\ t < -t_{\alpha} & \text{(lower-tail RR).} \\ |t| > t_{\alpha/2} & \text{(two-tailed RR).} \end{cases}$$

(See Table 5, Appendix 3, for values of t_{α} , with $\nu = n - 1$ df.)

Small-Sample Tests for Comparing Two Population Means

Assumptions: Independent samples from normal distributions with $\sigma_1^2 = \sigma_2^2$.

$$H_0: \mu_1 - \mu_2 = D_0.$$

$$H_a: \begin{cases} \mu_1 - \mu_2 > D_0 & \text{(upper-tail alternative).} \\ \mu_1 - \mu_2 < D_0 & \text{(lower-tail alternative).} \\ \mu_1 - \mu_2 \neq D_0 & \text{(two-tailed alternative).} \end{cases}$$

$$H_0: \mu_1 - \mu_2 = D_0.$$

$$H_a: \begin{cases} \mu_1 - \mu_2 > D_0 & \text{(upper-tail alternative)}. \\ \mu_1 - \mu_2 < D_0 & \text{(lower-tail alternative)}. \\ \mu_1 - \mu_2 \neq D_0 & \text{(two-tailed alternative)}. \end{cases}$$

$$\text{Test statistic: } T = \frac{\overline{Y}_1 - \overline{Y}_2 - D_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \text{ where } S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}.$$

$$\text{Rejection region: } \begin{cases} t > t_\alpha & \text{(upper-tail RR)}. \\ t < -t_\alpha & \text{(lower-tail RR)}. \\ |t| > t_{\alpha/2} & \text{(two-tailed RR)}. \end{cases}$$

$$\text{Here, } P(T > t_\alpha) = \alpha \text{ and degrees of freedom } \nu = n_1 + n_2 - 2. \text{ (See}$$

Rejection region:
$$\begin{cases} t > t_{\alpha} & \text{(upper-tail RR)} \\ t < -t_{\alpha} & \text{(lower-tail RR)} \\ |t| > t_{\alpha/2} & \text{(two-tailed RR)} \end{cases}$$

Here, $P(T > t_{\alpha}) = \alpha$ and degrees of freedom $\nu = n_1 + n_2 - 2$. (See Table 5, Appendix 3.)

Test of Hypotheses Concerning a Population Variance

= envivalent for 6

Assumptions: Y_1, Y_2, \ldots, Y_n constitute a random sample from a normal distribution with

$$E(Y_i) = \mu$$
 and $V(Y_i) = \sigma^2$.

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_a: \begin{cases} \sigma^2 > \sigma_0^2 & \text{(upper-tail alternative).} \\ \sigma^2 < \sigma_0^2 & \text{(lower-tail alternative).} \\ \sigma^2 \neq \sigma_0^2 & \text{(two-tailed alternative).} \end{cases}$$

$$\sigma^2 \neq \sigma_0^2$$

Test statistic:
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
.

$$\begin{cases} \chi^2 > \chi_{\alpha}^2 \\ \dots^2 & \dots^2 \end{cases}$$

Rejection region:
$$\begin{cases} \chi^2 > \chi_{\alpha}^2 & \text{(upper-tail RR).} \\ \chi^2 < \chi_{1-\alpha}^2 & \text{(lower-tail RR).} \\ \chi^2 > \chi_{\alpha/2}^2 \text{ or } \chi^2 < \chi_{1-\alpha/2}^2 & \text{(two-tailed RR).} \end{cases}$$

$$\chi^2 > \chi^2_{\alpha/2}$$
 or $\chi^2 < \chi^2_{1-\alpha/2}$

Notice that χ_{α}^2 is chosen so that, for $\nu = n - 1$ df, $P(\chi^2 > \chi_{\alpha}^2) = \alpha$. (See Table 6, Appendix 3.)

DEFINITION 10.3

Suppose that W is the test statistic and RR is the rejection region for a test of a hypothesis involving the value of a parameter θ . Then the *power* of the test, denoted by power(θ), is the probability that the test will lead to rejection of H_0 when the actual parameter value is θ . That is,

 $power(\theta) = P(W \text{ in RR when the parameter value is } \theta).$

Power (Do) = 2 = P(w in RR when 0=00)

Relationship Between Power and β

If θ_a is a value of θ in the alternative hypothesis H_a , then

$$power(\theta_a) = 1 - \beta(\theta_a).$$

DEFINITION 10.4

If a random sample is taken from a distribution with parameter θ , a hypothesis is said to be a *simple hypothesis* if that hypothesis *uniquely specifies* the distribution of the population from which the sample is taken. Any hypothesis that is not a simple hypothesis is called a *composite hypothesis*.

THEOREM 10.1

The Neyman–Pearson Lemma Suppose that we wish to test the simple null hypothesis $H_0: \theta = \theta_0$ versus the simple alternative hypothesis $H_a: \theta = \theta_a$, based on a random sample Y_1, Y_2, \ldots, Y_n from a distribution with parameter θ . Let $L(\theta)$ denote the likelihood of the sample when the value of the parameter is θ . Then, for a given α , the test that maximizes the power at θ_a has a rejection region, RR, determined by

$$\frac{L(\theta_0)}{L(\theta_a)} < k.$$

The value of k is chosen so that the test has the desired value for α . Such a test is a most powerful α -level test for H_0 versus H_a .

A Likelihood Ratio Test

Define λ by

$$\lambda = \frac{L(\hat{\Omega}_0)}{L(\hat{\Omega})} = \frac{\max\limits_{\Theta \in \Omega_0} L(\Theta)}{\max\limits_{\Theta \in \Omega} L(\Theta)}.$$

A likelihood ratio test of $H_0: \Theta \in \Omega_0$ versus $H_a: \Theta \in \Omega_a$ employs λ as a test statistic, and the rejection region is determined by $\lambda \leq k$.