Unit1

- KCL: current in = current out
- KCL: sum of voltage around loop = 0

 negative => opposite direction
- Ohm's law: V = IR
- Resistance
 - \circ series: R_eff = R1+R2
 - o parallel: R_eff = (1/R1+1/R2)^-1
- Voltage divider: must be in series, V1 = V_tot * (R1/(R1+R2))

Unit2

- Gates
 - AND
 - o OR
 - NOT
 - NAND
 - NOR
 - \circ XOR
 - XNOR
- Design Goals
 - Minimize circuit size
 - reduce gates/inputs
 - Maximize speed/Minimize delay
 - ▶ path length
 - gate type
 - Minimize power
- Boolean Algebra
- Combinational Logic
 - outputs = f(current inputs)
 - \circ memoryless
- Sequential Logic
 - o outputs = f(current + past inputs)
 - stateful

Unit3

- base r to base 10
- base 10 to binary
- binary <=> oct <=> hex
- unique combinations
 - \circ n bits in base r => r^n combinations
- approximations of powers of 2
 - 2^10 thousand Kilo
 - 2^20 million Mega
 - 2^30 billion Giga
 - 2^40 trillion Tera

Unit4

- bit fiddling
 - $\circ\,$ clear to 0 AND
 - set to 1 OR
 - $\circ~\text{invert}$ XOR

- check AND
- registers
 - DDRx
 - \circ PORTx
 - \circ PINx

Unit5

- · use state to perform operations at different rates/intervals
 - $\circ\,$ A set of possible input values: {0, 1}
 - A set of possible states: {S0, S1, S2}
 - A set of possible outputs: {False, True}
 - \circ An initial state = S0
 - A transition function:
 - {States x Inputs} -> the Next state
 - An output function:
 - States x Inputs} -> Output value(s)