Interfacing Mechanical Switches/Buttons

- Mechanical switches and buttons do not make solid, steady contact immediately after being pressed
- For a short few ms time, "bouncing" will ensue
- · Need to "denounce" switches with software

What is state?

- · The sum of all your previous experiences is what known as state
- · Your "state" determines you interpretation of sense and thoughts
- In a circuit, 'state' refers to all the bits being remembered (registers or memory)
- In software, 'state' refers to all the variables that are being used

State Machine Block Diagram

- A system that utilizes state is often referred to as a state machine (a.k.a. Finite state machine/FMS)
- Most state machines can be embodied in the following form
 - $^{\circ}$ Logic examines what's happening right now (inputs) & int then past (state) to
 - Produce outputs
 - Update the state

State Diagrams

- A state machine can be visualized and represented as a flow chart (state diagram)
 - ° Circles or boxes represent state
 - Arrows show what input causes a transition
 - Output can be generated whenever you reach a particular state or based on the combination of state + input
- Examples: traffic lights, washing machine

Implementation Tips:

- Continuously loop
- Each iteration
 - Poll inputs
 - Use if statement to decide current state
 - ° In each state, update state appropriately based on desired input transitions from that state
 - Produce appropriate output from that state
- · Ask questions like
 - ° What do I need to remember to interpret my inputs or produce my outputs?
 - Is there a distinct sequence of "steps" or "modes" that are used?