

Bit-fiddling

Using software to perform logic on individual (or groups) of bits
•
The primary way that software controls hardware is by manipulating individual bits in certain •
hardware registers (memory locations)

Set a bit to 1
◦
Clear a bit to 0
◦
Check the value of a bit
◦

Because computers do not access anything smaller than a byte (8-bits), we must use logic •
operations to manipulate individual bits within a byte

Numbers in Other Bases in C/C++

Suppose we want to place the binary value 00111010 into a char v
•
v=58
◦
v=0x3a
◦
v=0b00111010
◦

Compilers convert EVERYTHING to equivalent binary
•

Modifying Individual Bits

Suppose we want to change only a single bit without changing the other bits
•
v=1? No, assignments changes ALL bits in a variable
◦

Use bit wise operations
•
AND - clear individual bits to 0
◦
OR - set individual bits to 1
◦
XOR - invert bits
◦
AND - check a bit in a register
◦

bit = 11110000
•
control = 00111100
•

AND - 00110000 (&)
◦
OR - 11111100 (|)
◦
XOR - 11001100 (^)
◦
NOT - 00001111 (~)
◦

Bitwise operations are used for bit fiddling
•
Determine appropriate constant bit patterns (aka masks) that will change some bits while leaving •
others unchanged

Clear LSB to 0 w/o affecting other bits
◦
v = v & 0xfe
‣
v = v & ~(0x01)
‣

Set MSB to 1 w/o affecting other bits
◦
v = v | 0x80
‣

Flip the LS 4-bits
◦
v = v ^ 0x0f‣

