


Exceptions


In computer systems we may NOT know when
•
	 –External hardware events will occur.

• Can you think of an example?

	 – Errors will occur

• Exception processing refers to

	 – Handling events whose timing we cannot predict

• 3 questions to answer:

	 – Q: Who detects these events and how? A: The hardware

	 – Q: How do we respond? A: Calling a pre-defined SW function

	 – Q: What is the set of possible events? A: Specific to each processor


Definition: Any event that causes a break in normal execution
•
	 – "Exceptions" is a broad term to catch many kinds of events that interrupt normal software 	

 	 execution



Interrupt exceptions

• Two methods for processor and I/O devices to notify each other of events

	 – Polling loop or “busy” loop (responsibility on proc.)


Processor has responsibility of checking each I/O device
‣
Many I/O events happen infrequently (1-10 ms) with respect to the processors ability to ‣
execute instructions (1-100 ns) causing the loop to execute many times


	 – Interrupts (responsibility on I/O device)

I/O device notifies processor only when it needs attention
‣



Instruction cycle


Fetch
•
Decode
•
Execute
•
Check for exceptions
•



Software Handles Exceptions

1. Save place in current code and disable other interrupts

2. Automatically have the processor call some function/subroutine to handle the issue (a.k.a. Interrupt

Service Routine or ISR)

3. Reenable interrupts & resume normal processing back in original code


HW detects exceptions.
◦
Software handles exceptions.
◦



We must tell the processor in advance which function to associate (i.e. call) with the various exceptions 
it will check for



Function Calls vs. Interrupts


Normal function calls
•
Synchronous: Called whenever the program reaches that point in the code
◦
Programmer can pass arguments and receive return values
◦

Interrupts
•
Asynchronous: Called whenever an event occurs (can be anywhere in our program when the ISR ◦
needs to be called)


	 	 – Requires us to know in advance which ISR to call for each possible exception/interrupt

	 	 – Use ISR(interrupt_type) naming scheme in the Arduino to make this association


No arguments or return values
◦
	 	 – How would we know what to pass if we don't know when it will occur




	 	 – Generally interrupts update some global variables



Enabling Interruptions


Each interrupt source is DISABLED by default and must be ENABLED
•
For an interrupt to be handled, two "enablers" need to agree
•

	 – Enabler 1: A separate "local" interrupt enable bit per source (i.e. ADC, timer, pin change, etc.)

	 – Enabler 2: A single "global" interrupt enable bit (1-bit for entire processor called the I-bit)


