Pretraining
* Neural networks learn to extract features useful for some training task
» The more data you have, the more successful this will be
« If your training task is very general, these features may also be useful for other tasks!
* Hence: Pretraining
* First pre-train your model on one task with a lot of data
* Then use model’s features for a task with less data
+ Upends the conventional wisdom: You can use neural networks with small datasets now, if they
were pretrained appropriately!

Randomly
initialized model

Pretrain on lots
of data/compute

Pretrained
model

Adapt to
smaller dataset

ImageNet Features

* ImageNet dataset: 14M images,
1000-way classification

* Most applications don’t have this

much data
Container ship ard - * But the same features are still
[containers) pArs useful

= mite
] black widow | |
] cockroach
] tick
(] starfish

* Using “frozen” pretrained features
+ Get a (small) dataset for your task

» Generate features from ImageNet-
trained model on this data
« Train linear classifier (or shallow

neural network) using ImageNet
features

» ' .
> T - i \
rille % Madagascar cat
Vi I monkey
spider monkey
pickup Jjelly fungus elderberry titi
beach wagon gill fungus indri

fire engine | dead-man's-fingers currant howler monkey

Masked Language Modeling (MLM)

* MLM: Randomly mask some words, train model to predict what’s missing
+ Doing this well requires understanding grammar, world knowledge, etc.
+ Get training data just by grabbing any text and randomly delete words
* Thus: Crawl internet for text data

» Transformers are good fit due to scalability
« Large matrix multiplications are highly optimized on GPUs/TPUs
+ Don’t need lots of operations happening in series (like RNNs)

+ Most famous example: BERT

Fine-tuning
* Initialize parameters with BERT
+ BERT was trained to expect every input to start with a special token called [CLS]
« Add parameters that take in the output at the [CLS] position and make prediction
+ Keep training all parameters (“fine-tune”) on the new task
+ Point: BERT provides very good initialization for SGD

Decision Trees
+ At each node, split on one feature
* Remember the best output at each leaf node
« Classification: Majority class
* Regression: Mean within node
+ Given new example, find which leaf node it belongs to and predict the associated output

Ensembling
+ Create an “ensemble” of multiple models (e.g., multiple trees)
+ Make final prediction by averaging/majority vote

Tree 1 Tree2 Tree 3
Age > 50? BP >130?

No Yes No Yes No Yes
Cholesterol Cholesterol Cholesterol ‘ Age > 35? ‘ ‘ Age > 45? ‘ Cholesterol
> 240? >200? >250? No /N Yes No /N Yes >260?
No Yes No Yes No /\Yes No /\Yes

Bagging
* How do you learn different trees from the same dataset?
» I[dea: Randomly resample the dataset!
+ Given dataset with n examples, sample a new dataset of n examples with replacement
+ Also known as “Bootstrapping”
* In expectation, each new dataset contains 63% of the original dataset, with some examples
duplicated
* Learn a tree on each resampled dataset

