Process images by learning features hierarchically Start with most basic features on smallest patches Based on those, identify more complex features

Outline

- · Extracting features with convolutions
- CNN
- Computer vision tasks

REC DMC200 C12 PM Summy Key HIZCS An edge detector s							
Let's start a little less ambitiouslycan we detect a vertical line?							
-1 2 -1 -1 2 -1 -1 2 -1 (Convolutional) Kernel 3x3 matrix	0 0 0 0	0 1 1 0 Inp 5)	0 0 1 0 0 0 0	0 0 0 0 ima nat	0 0 1 0 0 age rix	0 0 1 0	Convolve Dot product kernel & each image patch
							15

Convolution takes in two matrices

- kernel k by k
- Input w by h
- Output w-k-1 by h-k-1 matrix
- Convolutional layer
 - ° Kernel is weight/parameter
 - Use convolution to extract features
- A linear operation

Motivation #1: local receptive fields

- · each neuron only looks at a small patch of input
- why? Local texture/shapes are useful
- Understand from local -> global patterns

Motivation #2: weight sharing

- · in each local receptive field, the same types of features are useful
 - Basic: detecting edges
 - More advanced: detecting moos
- Share the same kernel
- · Convolutions encode translation equivalence

CNN vs MLP

- CNN fewer parameters => need less data to learn useful features
- MLP have to learn to detect the same feature over and over again at different locations

Multiple input channels

- color image has 3 "channels" for red/green/blue
- Inputs is actually 3 x w x h
- Kernel has size Cin x k x k

Multiple output channels

- · can have multiple kernels, each to detect a different thing
- One for vertical lines, one for horizontal lines, etc.
- Total size of kernel tensor is Cout x Cin x k x k

Stride and padding

- · Stride: as you slide across image, how big of a step do you take
 - Default: stride = 1 pixel
 - Can choose larger stride to reduce dimensionality
- padding: pad the edges of images with 0's
 - For k=3 and no padding, width/height shrink by 2 each time
 - · Adding width-1 padding on each side prevent this
 - For k=5, pad by 2
 - Default: no padding

Convolutional layers

- Convolution + ReLU
- Pooling
 - Look for larger features
 - Reduce resolution of input by a factor of P (often P=2)
 - Average pool: average in each 2x2 patch
 - Max pool: max in each 2x2 patch
- Flatten
- · Fully connected
- Softmax

Computer vision

- object detection
- Semantic segmentation

