Linear Algebra [\(https://probml.github.io/pml-book/book1.html\)](https://probml.github.io/pml-book/book1.html)

Vector

A vector is a list of numbers

$$
\begin{aligned} \bullet \enspace x &= \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \\ \bullet \enspace x^\top &= \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \end{aligned}
$$

Inner product

- given two vectors: $x,y\in\mathbb{R}^n$
- notations: $\langle x,y\rangle$ or $x^\top y$
- $x^\top y = y^\top x = \sum_{i=1}^n x_i y_i$ (a scalar)

Euclidean norm (2-norm)

- the length of the vector
- given a vectors: $x \in \mathbb{R}^n$

$$
\bullet \ \ \lVert x \rVert = \sqrt{\textstyle\sum_{i=1}^n x_i^2}
$$

$$
\bullet \ \ \|x\|^2 = x^\top x
$$

unit vector: $\frac{x}{1+x}$ ∥x∥

Orthogonal and orthonormal

- given three vectors: $x,y,z\in\mathbb{R}^n$
- if $\langle x,y\rangle=0$, then x and y is $\boldsymbol{\mathsf{orthogonal}}$ (perpendicular) to each other
- the set of vectors $\{x, y, z\}$ is said to be orthonormal if x, y, z are mutually orthogonal, and $\|x\|=\|y\|=\|z\|=1$

Linear independence

- given a set of m vectors $\{v_1, v_2, \ldots, v_m\}$
- the set is linearly dependent if a vector in the set can be represented as a linear combination of the remaining vectors

$$
\,\circ\,\,v_m=\textstyle\sum_{i=1}^{m-1}\alpha_iv_i,\,\alpha_i\in\mathbb{R}
$$

• otherwise, the set is linearly independent

Span

- the ${\sf span\ of}\ \{v_1,\ldots,v_m\}$ is the set of all vectors that can be expressed as a linear combination of $\{v_1,\ldots,v_m\}$
	- span $(\{v_1,\ldots,v_m\})$ = $\left\{u:u=\sum_{i=1}^m\alpha_iv_i\right\}$.
- if $\{v_1,\ldots,v_m\}$ is linearly independent, where $v_i\in\mathbb{R}^m$, then any vector $u\in\mathbb{R}^m$ can be written as a linear combination of v_1 through v_m

$$
\begin{array}{l}\circ\text{ in other words, span}(\{v_1,\ldots,v_m\})=\mathbb{R}^m\\ \circ\text{ e.g. }v_1=\begin{bmatrix}1\\0\end{bmatrix}v_2=\begin{bmatrix}0\\1\end{bmatrix},\text{ span}\left(\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}\right)=\mathbb{R}^2\end{array}
$$

we call $\{v_1,\ldots,v_m\}$ a **basis** of \mathbb{R}^m

Matrix

- A matrix $A \in \mathbb{R}^{m \times n}$ is a 2d array of numbers with m rows and n columns if $m = n$, we call \overline{A} a square matrix
- Matrix multiplication
	- given two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$
	- $C = AB \in \mathbb{R}^{m \times p}$, where $C_{ij} = \sum_{k=1}^n A_{ik}B_{kj}$
	- not commutative: $AB \neq BA$
- Matrix-vector multiplication
	- \circ can be viewed as a linear combination of the columns of a matrix

Transpose A^\top

- The transpose of a matrix results from flipping the rows and columns $(A^{\top})_{ii} = A_{ii}$
- Some properties:
	- $(AB)^\top = B^\top A^\top$

$$
\hspace{0.25cm} \circ \hspace{0.25cm} (A+B)^\top = A^\top + B^\top
$$

If $A^\top = A$, we call A a $\mathop{\bf symmetric}\nolimits$ matrix

Trace $\mathrm{tr}(A)$

- The trace of a square matrix is the sum of its diagonal $\mathrm{tr}(A)=\sum_{i=1}^n A_{ii}$
- If A,B are square matrix, then $\mathrm{tr}(AB)=\mathrm{tr}(BA)$

Inverse A^{-1}

The inverse of a square matrix A is the unique matrix such that $\circ \ \ A^{-1}A=I=AA^{-1}$

- Let A be a $n\times n$ matrix. A is invertible iff
	- the column vectors of A is linearly independent (spans \mathbb{R}^n)

$$
\circ\:\det(A)\neq 0
$$

Assume that both $\overline{A},\overline{B}$ are invertible. Some properties:

$$
\begin{array}{l} \circ \,\, (AB)^{-1} = B^{-1}A^{-1} \\ \circ \,\, (A^{-1})^\top = (A^\top)^{-1} \end{array}
$$

Orthogonal matrix

- A square matrix is orthogonal if all its columns are orthonormal
- U is a orthogonal matrix iff

$$
\,\circ\,\ U^TU=I=UU^\top
$$

$$
\,\circ\,\ U^{-1} = U^\top
$$

Note: if U is not square but has orthonormal vectors, we still have $U^TU=I$ but not $UU^\top = I$

Calculus

Chain rule

•
$$
\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
$$
 (single-variable)

\n- e.g.,
$$
y = (x^2 + 1)^3
$$
, $\frac{dy}{dx} = ?$
\n- let $u = x^2 + 1$, then $y = u^3$
\n- $\frac{dy}{dx} = 3(x^2 + 1)^2(2x)$
\n

Critical points

- $f^\prime > 0$ => f is increasing
- $f^\prime < 0$ => f is decreasing
- $f''>0 \Rightarrow f'$ is increasing => f is concave up
- $f'' < 0 \Rightarrow f'$ is decreasing => f is concave down
- We call $x = a$ a critical point of a continous function $f(x)$ if either $f^{\prime}(a) = 0$ or $f^{\prime}(a)$ is undefined
- different kinds of critical points: local minimum, local maximum, inflection point use second derivative test to check the concavity

Taylor series

•
$$
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n
$$
 (single-variable)

- second order approximation:
	- $f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$ (single-variable)
	- $f(w) \approx f(u) + \nabla f(u)^\top (w-u) + \frac{1}{2} (w-u)^\top H_f(u) (w-u)$ (multivariate) $w,u \in \mathbb{R}^d$

$$
\quad \bullet \ \ \nabla f_w{}^\top = [\tfrac{\partial f}{\partial w_0}, \cdots, \tfrac{\partial f}{\partial w_d}]
$$

$$
\quad \bullet \ \ H_f \ \text{is the Hessian matrix, where} \ (H_f)_{ij} = \tfrac{\partial^2 f}{\partial w_i \partial w_j}
$$

Probability

Conditional probability

 $P(A|B)$: the conditional probability of event A happening given that event B has occurred

$$
\mathrel{\circ}\; P(A|B) = \tfrac{P(A,B)}{P(B)}
$$

- $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ (Bayes rule) $\overline{P(B)}$
- $\{A_i\}_{i=1}^n$ is a partition of the sample space. We have $P(B) = \sum_{i=1}^{n} P(B, A_i) = \sum_{i=1}^{n} P(B|A_i) P(A_i)$

Independece and conditional independence

random variable X is independent with Y iff

$$
\mathrel{\circ}\ P(X|Y) = P(X)
$$

- $P(X, Y) = P(X)P(Y)$
- random variable X is conditionally independent with Y given Z iff
	- $P(X|Y, Z) = P(X|Z)$
	- $P(X, Y | Z) = P(X | Z) P(Y | Z)$

Expectation

- \mathcal{X} : the sample space. The set of all possible outcomes of an experiment.
	- e.g., the face of a dice, $\mathcal{X}=\{1,2,3,4,5,6\}$
- $\overline{p}(x)$: probability mass function (discrete) or probability density function (continuous)
- $\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x\, p(x)$ (discrete)
- $\mathbb{E}[X] = \int_{\mathcal{X}} x \, p(x) \, dx$ (continuous)
- $\bullet \mathbb{E}[aX + b] = a \mathbb{E}[X] + b$
- If X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X]\,\mathbb{E}[Y]$
	- \circ the converse is not true

Variance and covariance

- $\text{Var}[X] = \mathbb{E}\left[(X-\mu)^2\right]$, where $\mu = \mathbb{E}[X]$ $=\mathbb{E}\left[X^2 \right] -\mu^2.$
- $\text{Var}[aX + b] = a^2 \, \text{Var}[X]$
- $Cov[X, Y] = \mathbb{E} [(X \mu_X)(Y \mu_Y)]$
- If X and Y are independent, then $\mathrm{Cov}[X, Y] = 0$ \circ the converse is not true

Covariance matrix

- Consider d random variables X_1, \ldots, X_d
- $\text{Cov}[X_i,X_j]=\mathbb{E}\left[(X_i-\mu_{X_i})(X_j-\mu_{X_j})\right]$
- We can write a $d \times d$ matrix Σ , where $\Sigma_{ij} = \text{Cov}[X_i, X_j]$ when $i=j$ (diagonal), $\mathbb{E} \left[(X_i - \mu_{X_i}) (X_i - \mu_{X_i}) \right] = \text{Var}[X_i]$