Linear Algebra (https://probml.github.io/pml-book/book1.html)

Vector

• A vector is a list of numbers

$$ullet \, egin{array}{lll} ullet \, \, x = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \in \mathbb{R}^n \ ullet \, \, x_n \end{bmatrix} \in \mathbb{R}^n \ ullet \, \, x_n \end{bmatrix} egin{array}{lll} ullet \, \, x_n \end{bmatrix}$$

Inner product

- given two vectors: $x,y\in \mathbb{R}^n$
- notations: $\langle x,y
 angle$ or $x^ op y$
- $x^ op y = y^ op x = \sum_{i=1}^n x_i y_i$ (a scalar)

Euclidean norm (2-norm)

- the length of the vector
- given a vectors: $x \in \mathbb{R}^n$

•
$$\|x\| = \sqrt{\sum_{i=1}^n x_i^2}$$

•
$$\|x\|^2 = x^ op x$$

• unit vector: $\frac{x}{\|x\|}$

Orthogonal and orthonormal

- given three vectors: $x,y,z\in \mathbb{R}^n$
- if $\langle x,y
 angle=0$, then x and y is **orthogonal** (perpendicular) to each other
- the set of vectors $\{x,y,z\}$ is said to be orthonormal if x,y,z are mutually orthogonal, and $\|x\|=\|y\|=\|z\|=1$

Linear independence

- given a set of m vectors $\{v_1, v_2, \ldots, v_m\}$
- the set is **linearly dependent** if a vector in the set can be represented as a linear combination of the remaining vectors

$$\circ ~ v_m = \sum_{i=1}^{m-1} lpha_i v_i, \, lpha_i \in \mathbb{R}$$

• otherwise, the set is **linearly independent**

Span

- the **span** of $\{v_1, \ldots, v_m\}$ is the set of all vectors that can be expressed as a linear combination of $\{v_1, \ldots, v_m\}$
 - \circ span $(\{v_1,\ldots,v_m\})$ = $\left\{u:u=\sum_{i=1}^m lpha_i v_i
 ight\}$
- if $\{v_1,\ldots,v_m\}$ is linearly independent, where $v_i\in\mathbb{R}^m$, then any vector $u\in\mathbb{R}^m$ can be written as a linear combination of v_1 through v_m

• in other words, span
$$(\{v_1, \dots, v_m\}) = \mathbb{R}^m$$

• e.g. $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, span $\left(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}\right) = \mathbb{R}^2$

$$\circ\;$$
 we call $\{v_1,\ldots,v_m\}$ a **basis** of \mathbb{R}^m

Matrix

- A matrix $A \in \mathbb{R}^{m imes n}$ is a 2d array of numbers with m rows and n columns \circ if m = n, we call A a square matrix
- Matrix multiplication
 - $\circ~$ given two matrices $A \in \mathbb{R}^{m imes n}$ and $B \in \mathbb{R}^{n imes p}$
 - $\circ \ C = AB \in \mathbb{R}^{m imes p}$, where $C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$
 - \circ not commutative: AB
 eq BA
- Matrix-vector multiplication
 - can be viewed as a linear combination of the columns of a matrix

Transpose $A^ op$

- The transpose of a matrix results from flipping the rows and columns
 (A^T)_{ij} = A_{ji}
- Some properties:
 - $\circ \ (AB)^{\top} = B^{\top}A^{\top}$

$$\circ \ \ (A+B)^{\top} = A^{\top} + B^{\top}$$

• If $A^{ op} = A$, we call A a symmetric matrix

Trace $\operatorname{tr}(A)$

- The trace of a square matrix is the sum of its diagonal $\circ \ \operatorname{tr}(A) = \sum_{i=1}^n A_{ii}$
- If A, B are square matrix, then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Inverse A^{-1}

- The inverse of a square matrix A is the unique matrix such that $\circ \ A^{-1}A = I = AA^{-1}$

- Let A be a n imes n matrix. A is invertible iff
 - $\circ\;$ the column vectors of A is linearly independent (spans \mathbb{R}^n)

$$\circ \ \det(A)
eq 0$$

• Assume that both A, B are invertible. Some properties:

$$egin{array}{lll} \circ & (AB)^{-1} = B^{-1}A^{-1} \ \circ & (A^{-1})^ op = (A^ op)^{-1} \end{array}$$

Orthogonal matrix

- A square matrix is orthogonal if all its columns are orthonormal
- U is a orthogonal matrix iff

$$\circ \ U^T U = I = U U^{\bar{}}$$

- $\circ \ U^{-1} = U^\top$
- Note: if U is not square but has orthonormal vectors, we still have $U^T U = I$ but not $U U^{ op} = I$

Calculus

Chain rule

•
$$rac{dy}{dx} = rac{dy}{du} rac{du}{dx}$$
 (single-variable)

• e.g.,
$$y = (x^2 + 1)^3, \ rac{dy}{dx} = ?$$

 $\circ \ ext{let} \ u = x^2 + 1, ext{then} \ y = u^3$
 $\circ \ rac{dy}{dx} = 3(x^2 + 1)^2(2x)$

Critical points

- $f' > 0 \Rightarrow f$ is increasing
- $f' < 0 \Rightarrow f$ is decreasing
- $f'' > 0 \Rightarrow f'$ is increasing $\Rightarrow f$ is concave up
- $f^{\prime\prime} < 0 \Rightarrow f^\prime$ is decreasing $\Rightarrow f$ is concave down
- We call x=a a critical point of a continous function f(x) if either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ is undefined
- different kinds of critical points: local minimum, local maximum, inflection point
 use second derivative test to check the concavity

Taylor series

•
$$f(x) = \sum\limits_{n=0}^{\infty} rac{f^{(n)}(a)}{n!} (x-a)^n$$
 (single-variable)

- second order approximation:
 - $\circ \ f(x) pprox f(a) + f'(a)(x-a) + rac{1}{2}f''(a)(x-a)^2$ (single-variable)
 - $\circ f(w)pprox f(u) +
 abla f(u)^ op (w-u) + rac{1}{2}(w-u)^ op H_f(u)(w-u)$ (multivariate) $\bullet w, u \in \mathbb{R}^d$

•
$$abla f_w^{ op} = [rac{\partial f}{\partial w_0}, \cdots, rac{\partial f}{\partial w_d}]$$

•
$$H_f$$
 is the Hessian matrix, where $(H_f)_{ij}=rac{\partial^2 f}{\partial w_i\partial w_j}$

Probability

Conditional probability

- P(A|B): the conditional probability of event A happening given that event B has occurred

$$\circ \ P(A|B) = rac{P(A,B)}{P(B)}$$

- $P(A|B) = rac{P(B|A)P(A)}{P(B)}$ (Bayes rule)
- $\{A_i\}_{i=1}^n$ is a partition of the sample space. We have $P(B) = \sum_{i=1}^n P(B,A_i) = \sum_{i=1}^n P(B|A_i)P(A_i)$

Independece and conditional independence

- random variable X is independent with Y iff

$$\circ \ P(X|Y) = P(X)$$

- $\circ P(X,Y) = P(X)P(Y)$
- random variable X is conditionally independent with Y given Z iff
 - $\circ \ P(X|Y,Z) = P(X|Z)$
 - $\circ \ P(X,Y|Z) = P(X|Z)P(Y|Z)$

Expectation

- \mathcal{X} : the **sample space**. The set of all possible outcomes of an experiment.
 - $\circ~$ e.g., the face of a dice, $\mathcal{X}=\{1,2,3,4,5,6\}$
- p(x): probability mass function (discrete) or probability density function (continuous)
- $\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \, p(x)$ (discrete)
- $\mathbb{E}[X] = \int_{\mathcal{X}} x \, p(x) \, dx$ (continuous)
- $\mathbb{E}[aX+b] = a \mathbb{E}[X] + b$
- If X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \, \mathbb{E}[Y]$
 - the converse is not true

Variance and covariance

- $\operatorname{Var}[X] = \mathbb{E}\left[(X \mu)^2\right]$, where $\mu = \mathbb{E}[X]$ $\circ = \mathbb{E}\left[X^2\right] - \mu^2$
- $\operatorname{Var}[aX+b] = a^2 \operatorname{Var}[X]$
- $\operatorname{Cov}[X,Y] = \mathbb{E}\left[(X-\mu_X)(Y-\mu_Y)
 ight]$
- If X and Y are independent, then $\operatorname{Cov}[X,Y] = 0$ \circ the converse is *not* true

Covariance matrix

- Consider d random variables X_1,\ldots,X_d
- $\operatorname{Cov}[X_i, X_j] = \mathbb{E}\left[(X_i \mu_{X_i})(X_j \mu_{X_j})\right]$
- We can write a d imes d matrix Σ , where $\Sigma_{ij} = \operatorname{Cov}[X_i, X_j]$ • when i = j (diagonal), $\mathbb{E}\left[(X_i - \mu_{X_i})(X_i - \mu_{X_i})\right] = \operatorname{Var}[X_i]$